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ABSTRACT

Koduvayur Parthasarathy Sunanda Ph.D., Purdue University, December 2010. Trans-
port studies of interaction effects in one and two dimensional hole systems. Major
Professor: Leonid P Rokhinson.

Interest in hole systems has increased recently due to their potential applications

in ‘spintronics’. They are characterized by stronger spin-orbit interaction and higher

effective mass which is manifested in the form of stronger correlation effects. In

this thesis, I present transport studies of hole systems grown on GaAs/AlGas het-

erostructures. The first project involves studies of anisotropy of spin-splitting in 1D

channels by measuring conductance quantization of these channels as a function of

gate voltage in the presence of an in-plane field. It is shown that the anisotropy of

spin-splitting (characterized by the g-factor) in 1D channels is enhanced relative to

the 2D anisotropy and is due to the crystalline anisotropy of spin-orbit interactions

rather than due to lateral confinement.

In the second project, I study the effect of external strain on stripe phases in quan-

tum Hall systems. The orientation of stripes is switched as a function of strain with

stripes aligning along the direction of the large external uniaxial strain applied. I also

present theoretical results that were obtained as part of a collaboration initiated due

to the above mentioned experiments. The theoretical work attempts to understand

the origin of preferential orientation of stripes along [110] for two dimensional hole

gas grown along (001) GaAs. Hartree-Fock formalism is used to estimate anisotropic

exchange interaction that explains orientation of stripes for different strain values.

It is also shown that internal strains present in these heterostructures could be the

reason for preferential orientation of stripes along [110] in these systems.
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1. INTRODUCTION

There is probably no other discovery or invention in the 20th century that has changed

man’s life to an extent comparable to the discovery of the transistor [1]. Together with

the follow up invention of the integrated chips in 1958/59 transistors have defined the

present generation of electronics. Today’s era of electronics depends on the miniatur-

ization of solid state devices for improvement in speed and functionality. The progress

towards incessant miniaturization is limited by the manifestation of quantum effects

at these small scales. These unavoidable limitations on the conventional “top-down”

approach has shifted the focus to the new paradigm of “bottom-up” nano-electronics.

The “bottom-up” approach explores the possibility of building scalable devices

from precise atomically controllable building blocks. In the quest for ever increas-

ing speed and efficiency, the journey of electronics took a new direction towards

‘Spintronics’-an acronym for spin transport electronics, with the discovery of the gi-

ant magnetorestrictive effect (GMR) [2, 3]. This new model changed the focus from

electronic charge to spin as the basis for building devices. While initial demonstration

of spintronics was done by controlling spins using external magnetic fields, it was soon

realized that this was not viable for building a scalable architecture. Manipulation of

spins using electric fields would be ideal for “on-chip” control of spins.

Spin-orbit(SO) coupling provides the fundamental link between spin and orbital

degrees of freedom of an electron or hole, allowing manipulation of spins using electric

fields. Since the proposal by Datta and Das [4] for a spin field effect transistor, inter-

est in this field has increased tremendously. The strong spin-orbit interaction in hole

systems has channelized this interest towards a better understanding of the complex

valence band structure. In this thesis we study the effect of lateral confinement on

spin splitting in two dimensional hole systems(chapter 3). Apart from applications in

spintronics, hole systems provide a rich framework to understand many-body corre-
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lation effects. The higher effective mass of holes, in comparison to electrons, results

in comparably smaller kinetic energies and Fermi energies thus rendering the correla-

tion effects more evident. In chapter 4 we try to better understand some correlation

effects, like the nematic phases, found in two dimensional holes.

1.1 Band structure of holes in bulk GaAs

Transport properties of a semiconductor are characterized by its band structure

or its dispersion relations: energy En(k) as a function of wave vector k. Fig.1.1(a)

shows a qualitative sketch of the band structure of bulk GaAs. While the conduction

band has s-like symmetry and is parabolic, the valence band has p-like symmetry.

Incorporation of SO terms in the Hamiltonian introduces a splitting in the valence

band, with J = 3/2 and J = 1/2 states separated by the spin-orbit gap ∆. At Γ point

(center of the Brillouin zone) the spin orbit gap is 0.34eV in GaAs. Furthermore, the

four fold degenerate J = 3/2 hole bands further split at non-zero k. These bands with

Jz = ±3/2 and Jz = ±1/2 are called the heavy hole(HH) and light hole(LH) bands

respectively. The distinction between heavy and light for these two bands comes from

the difference in their effective masses.

1.2 Quasi two dimensional hole systems

In this work we study interaction effects in two dimensional hole gases(2DHG)

and study spin splitting in one dimensional hole system which are fabricated from

2DHG. Thus it is very important to understand the effects of size quantization on

the band structure of holes.

The most important effect of quantizing bulk GaAs into two dimensions is the

lifting of the four fold degenerate J = 3/2 hole bands at Γ = 0. The bands are

split into heavy hole Jz = ±3/2 states and light hole Jz = ±1/2 states at k‖ =

0. The subband quantization introduces mixing between the HH and LH states

leading to an anticrossing as shown in Fig.1.1(b). While the HH and LH states have
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(a) Schematic of bulk GaAs 
      band structure

(b) Schematic of quasi two 
     dimensional GaAs hole
     gas band structure

J=1/2

J=3/2
HH, JZ= +3/2

LH, JZ= +1/2

Valence
band

Conduction
band

k

Eg

E

Figure 1.1. (a) Schematic of the band structure of bulk GaAs. The
conduction band has s-like symmetry while the valence band has p-
like symmetry. ∆ is the spin-orbit splitting and Eg is the energy gap
of the material. (b) Schematic band structure for two dimensional
GaAs. The degeneracy of the light hole(LH) and heavy hole(HH)
bands is lifted at the center. LH-HH mixing causes anticrossings as
shown by the dotted lines.EF indicates the Fermi level.

larger and smaller effective masses, respectively, along the growth direction of the

heterostructure, the roles are reversed in the plane of the 2DHG. That is, the HH(LH)

states have smaller(larger) effective mass for motion in the plane of the 2DHG.

The spin orbit gap between the J = 1/2 and J = 3/2 bands is much larger

than the splitting between the HH and LH splitting (∼ 10meV). Thus transport

physics is governed by the HH-LH bands in 2DHG. For typical densities in these

heterostructures(∼ 1011 cm−2), the Fermi energy is of the order of 2meV , thus in the

low temperature limit only the top most heavy hole subband is occupied in 2DHG.
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1.2.1 Size quantization and quantization axis

For 2DHG grown on (001) GaAs substrate with the orbital angular momentum

quantized along the z-direction(the direction of growth of the heterostructure), spin

orbit interaction locks the spins along the same direction. In the presence of an in-

plane field, the g-factor, which quantifies the Zeeman splitting in the first order, is

thus nearly zero [5, 6].

On the other hand for 2DHG grown along other low-symmetry directions like (311)

this simple picture breaks down. Due to anisotropic orbital motion of the holes and

the strong spin-orbit interactions present in these systems, the Zeeman splitting in the

presence of an in-plane field, or equivalently the g-factor, becomes anisotropic with

respect to the direction of the in-plane field relative to the crystallographic axes [7,8].

In chapter 3 we see the effect of further quantization into one dimension forn

2DHG grown along (311). Strong spin-orbit interaction enriches the picture further,

giving us more degrees of freedom to fabricate one-dimensional devices.

1.3 Spin-Orbit coupling in two dimensional systems

Electrons and holes in semiconductors have a spin degeneracy at B = 0, i.e.

E↑(k) = E↓(k). In the presence of an inversion-asymmetric potential, this degener-

acy is lifted but the Kramer’s degeneracy persists E↑(k) = E↓(−k). The inversion

asymmetric potential could either be due to Bulk Inversion Asymmetry(BIA), wherein

the crystal does not have a center of inversion (like GaAs and other Zinc-Blende struc-

tures) or could be due to Structural Inversion Asymmetry(SIA) which is essentially

asymmetry of the confining potential. The BIA induced spin splitting is characterized

by the Dresselhaus term and for 2D electrons is linear in k: HD ∝ (σxkx − σyky),

where σx, σy are Pauli matrices. The proportionality constant depends on the band

structure parameters of the crystral and spread of the wavefunction along the growth

direction. The SIA induced spin splitting, also known as the Rashba term, is also

linear in k for 2D electrons : HR ∝ (σxky − σykx). Here the proportionality constant
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depends on the electric field in the growth direction and other material parameters.

In the case of 2D holes this picture of linear k terms changes due to the fact that the

holes in the heavy hole band are spin 3/2 particles. The Dresselhaus and Rasha spin

orbit terms are cubic in k

HD ∝ σ+p−p+p− + σ−p+p−p+ (1.1)

and

HR ∝ σ+p3
− − σ−p3

+. (1.2)

where p± = px± ipy and σ± = (σx± iσy)/2. Also in holes, the spin-orbit interactions

are stronger as a result of their higher effective mass and the spin-splitting of the HH

band is 0.5meV.

1.4 Transport in two dimensional systems

1.4.1 Density and mobility

Two dimensional systems have the unique property that the density of states is

independent of energy:

D =
m∗

π~2
(1.3)

This gives a Fermi energy EF = π~2
m∗ n where n is the 2D density of holes(electrons).

In the samples studied in this thesis, for n ∼ 1011 cm−2, Fermi energy is ∼2meV

and Fermi wavelength given by λF =
√

2π
n

is ∼ 50 − 60nm. One of the important

quantities in the magnetotransport studies of 2D semiconductors is the mobility. The

semiclassical Drude theory gives mobility µ = 1
neρs

, where ρs is the sheet resistivity

which is proportional to the Hall resistance and the proportionality constant given by

a geometrical factor:ρs = πRxx

ln2
. This is strictly valid only for low field where ωcτ ¿ 1

with ωc = eB
m∗ . The mobilities of the samples used in this thesis are 0.4×106cm2/Vs

(Chapter 3) and 0.8×106cm2/Vs (Chapter 4), as measured at low temperatures. The

density of these samples are measured from the low-field Shubnikov de Haas oscilla-

tions.
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1.4.2 Shubnikov de Haas oscillations

A 2D electron(hole) gas in the presence of a perpendicular magnetic field has

its energy quantized in a series of delta peaks, called the Landau levels(LL), which

are separated by the cyclotron energy-~ωc. The sharp delta peaks broaden due to

impurity scattering. The density of states at each LL is given by nL = eB/h. As

the field increases the density of states and the separation between the LLs increases.

Thus, the filling factor which is the ratio ν = n
nL

= hn
eB

, decreases. As the field is

increased, whenever the Fermi level lies in between two LLs, the density of states is

a minimum, leading to both a minimum in resistivity (ρxx) and conductivity(σxx).

Thus the density of states and hence the resistivity oscillates with a period ∝ 1/B.

These oscillations are known as the Shubnikov de Haas oscillations. The density of

the samples can be obtained experimentally using these oscillations (n = νeB/h),

as shown in Fig. 1.2. Beating due to the two spin-split subbands can be seen in the

resistance as a function of magnetic field. The Fast Fourier Transform(FFT) of this

data is shown in Fig. 1.2(b). FFT was done by a standard technique that makes use

of a Hamming window. The densities of the samples used in this thesis were measured

to be 1.4×1011cm−2(Chapter 3) and 2.25×1011cm−2(Chapter 4).

1.5 Conductance quantization in 1D channels

Conventionally resistivity of a sample is understood as the scattering of charge

carriers with impurities in the sample. The average distance traveled by a charge car-

rier between scattering events is known as the mean free path. With the development

of extremely clean materials, it is possible to fabricate quantum point contacts(QPC),

whose widths are comparable to the Fermi wavelength of the carriers and much smaller

than the mean free path. Transport in such devices where scattering is minimal is in

the ballistic regime.

Classical expression of conductance in a point contact is given by G = (2e2

h
)kF W

π

where kF is the Fermi wave vector and W is the width of the point contact. van



7

0.0 0.1 0.2 0.3 0.4
0

4

8

12

16

20

0 5 10 15 20
0.0

0.1

0.2

0.3
(b)

 Rxx (ohm)

 

 

R
(
)

B(T)

(a)

f2

 

 

Frequency (T)

FF
T

 A
m

pl
itu

de
 (a

.u
)

f1=4.45
f2=4.92
ftot=9.49

f1

ftot

Figure 1.2. (a) Shubnikov de Haas oscillations in resistance of a 2D
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density(ftot) are indicated.
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Wees [9] (Fig. 1.3)and Wharam [10] first measured conductance of a QPC(λF ' W ,

where λF is the Fermi wavelength) fabricated in a 2D electron gas. Surprisingly they

found that the conductance of the quantum point contact to be quantized in units of

e2

h
.

Landauer and Buttiker [11,12] proposed the theory of conductance as transmission

in quantam point contacts: G = 2e2

h
T = 2e2

h

∑N
n,m=1 |tnm|2, where t is the transmission

matrix, T is the total transmission and the sum is over all transverse modes in the

QPC. A simplistic picture to understand this model would be to consider the QPC

as a wave guide. There is an equipartition of current amongst all the modes at the

Fermi level as the product of the group velocity and density of states is a constant

for a 1D system. Each transverse mode in the QPC contributes 2e2/h (the factor

2 includes the spin degeneracy) to the conductance of the channel. If there are N

modes at the Fermi level, this gives a conductance of G = N 2e2

h
. As the width W

of the QPC decreases, the number of transverse modes N ≈ 2W/λF , in the QPC

decreases, leading to a decrease in the conductance by a discrete quantum of 2e2/h

or integer multiples of it.

While QPCs in electron systems have been rigorously researched from as early as

the late 80s, first observation of quantized conductance in holes came only six years

later [13–15] due to challenges in fabrication. Observation of clean conductance steps

on par with those of electron systems is always a challenge in hole systems due to their

higher effective mass which reduces the energy level spacing and the mean free path,

making resolution of conductance plateaus and observation of ballistic transport more

difficult. Fig. 1.3 shows conductance quantization for a QPC on a two dimensional

electron(a) and hole(b) gas. Fig. 1.3(a) is from [9]. Note the opposite polarity of the

gate voltage.
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Figure 1.3. Conductance as a function of gate voltage for a Quantum
Point Contact fabricated from (a) two dimensional electron gas and
(b) two dimensional hole gas. (a) is taken from B.T.van Wees et. al.
Phys. Rev. Lett. 60, 848850 (1988).

1.6 Quantum Hall Effect

Since its discovery in 1980, quantum Hall effect has opened a wide range of in-

triguing puzzles in low dimensional condensed matter physics. Klaus Von Klitzing

measured the resistance of a two dimensional electron gas in the presence of perpendic-

ular magnetic fields. It was found that the Hall conductivity was quantized in integer

steps of 2e2

h
as the density of electrons was changed, at a constant perpendicular field.

Energy of a two dimensional electron system in the presence of a perpendicular mag-

netic field is quantized into discrete Landau levels : E = E0 + (N + 1/2)~ωc where

~ωc = ~eB
mc

is the cyclotron energy. As the density changes, the Fermi level steps

through the various Landau levels. For the range of gate voltages when the Fermi

level lies in the gap of localized states between the Landau levels, the conductivity is

quantized at νe2

h
, where ν is the filling fraction defined by ν = nh

eB
(Fig. 1.4). This exact

quantization (accuracy of one part in a billion) of Hall resistance led to the definition
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Figure 1.4. Schematic of two dimensional density of states (Lan-
dau Levels) in the presence of a perpendicular magnetic field. The
separation between the Landau levels decreases as magnetic field B
increases.

of a new standard of resistance : h
e2 known as the Klitzing constant. High precision

measurements of the quantum Hall resistance also leads to the precise determination

of the fine structure constant α which is proportional to e2

h
.

1.6.1 Fractional Quantum Hall Effect

Theory had predicted that for the lowest LL, ν < 1, the electrons would ar-

range themselves in a triangular lattice known as the Wigner solid. Soon after the

experimental discovery of IQHE, Dan Tsui, Horst Stormer and Arthur Gossard ob-

served another interesting feature while studying very clean two dimensional electron
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gas formed at the interface of a GaAs/AlGaAs heterostructure. While measuring

the Hall resistance they found new steps that were quantized at fractional multiples

of the fundamental constant h
2e2 . The initial speculation was that this was an ex-

perimental evidence for the formation of the Wigner crystal. Interestingly enough

the initial experiments showed steps at fractions with odd denominators. Most of

the FQHE states were seen in the lowest two LLs, N=0 and 1. It turned out that

the Wigner crystal picture was not the correct explanation for the formation of the

FQHE states. A year after the experimental observation of FQHE, Laughlin proposed

a model based on fractionally charged quasiparticles which explained the presence of

the odd-denominator fractionally quantized states. The ground state of the two di-

mensional quantum fluid of quasiparticles, known as the Laughlin liquid, is given by

the Laughlin wavefunction [16]:

Ψm = {
∏
i<j

(zi − zj)
m} exp(

−1

4

∑
i

|zi|2) (1.4)

where zi is the position of the ith electron and is given by z = x + iy. Most of the

FQHE states can be successfully explained using the composite fermion picture.

A few years later Willet et al made yet another surprising observation of an even

denominator fractionally quantized state at filling fraction ν = 5/2. The exact nature

of this state is still under debate.

The field of quantum hall effect and fractional quantum hall effect has thus proved

to be a fertile ground to understand correlation effects resulting in various novel

quantum phases of matter, making it an extremely active field of research even after

28 years of its discovery.

1.6.2 Nematic phases at high Landau levels : N>1

Before the experimental discovery of Quantum Hall Effect(QHE), [17] suggested

that the two dimensional electron gas is unstable to the formation of a charge density

wave. Much later it was proposed that CDWs should form the ground state for

higher Landau levels, N>1 by both Fogler,Koulakov, Shklovski [18,19] and Moessner,
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Chalker [20]. [18,19] predict that at half-fillings of higher LLs (N>1), a stripe phase of

the CDW is formed which is made up of alternating strips of filled and empty states

of the topmost LL. They also predicted that away from the half-filling this stripe

phase develops into a triangular bubble phase, where 2 or more electrons occupy the

triangular lattice sites(Fig. 1.5(a) and (b)).

Experimental evidence for the stripe phases came in the form of Anisotropic Mag-

netoResistance(AMR) observed at half-fillings of N>1 LLs in electrons [21, 22] and

holes [23,24]. The resistance was measured (for current predominantly flowing in the

same direction i.e. Rxx) along the principal axes of the 2D gas at half-filling of these

levels. It was observed that it showed a peak or minimum depending on the axes.

A characteristic plot of magnetotransport for a 2D GaAs hole gas grown along (001)

is shown in Fig. 1.5(c). The difference between the red and blue curves is just the

orientation of current and voltage contacts, which are perpendicular to each other

and along the principal axes [110] and [110] respectively. At ν = 7/2 resistance along

[110] shows a minimum while resistance along [110] shows a maximum. This differ-

ence in resistance is understood to be the consequence of transport being easier along

the stripes compared to perpendicular to the stripes. The other salient experimental

feature observed is the ‘satellite’ peaks on either side of half-filling (seen close to 1/4

fillings) that are separated from the peaks at half-filling by an insulating region. Rxy

at these insulating regions is quantized to the nearby integer quantum hall state val-

ues and thus are called the Re-entrant Integer Quantum Hall Effect(RIQHE) states.

The insulating RIQHE state can be interpreted as due to the disorder pinning of the

bubble phase [25].

The consistent experimental feature observed in all of the above experiments has

been the orientation of the stripe phases along [110] for 2D gas grown along (001)

GaAs. In Chapter 4 of this thesis we try to understand the anisotropic interactions

that orient stripes along [110] by applying external strain.
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Figure 1.5. (a) Schematic of the formation of stripe faces at half-filling
of N>1 LLs. (b) Schematic of formation of bubble phase away from
half fillings for N>1. (c) Characteristic magnetotransport data for a
two dimensional hole system, showing the stripe phase at ν=7/2 and
the bubble phase close to it. The red and blue curves are resistance
along the two perpendicular directions of the sample, as shown in the
inset.
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I suggest here some references for a more detailed introduction to the topics cov-

ered in this thesis.

1. “Spin-Orbit coupling effects in Two-Dimensional electron and hole systems”

by Roland Winkler. Springer Tracts in Modern Physics

2. “Introduction to mesoscopic physics” by Yoseph Imry. Oxford University Press

3. “The Quantum Hall Effect (Graduate Texts in comtemporary physics/Maryland

subseries)”-Edited by Richard E Prange and Steven Girvin

4. “Quantum Theory of the Electron Liquid” by Gabriele Giuliani and Giovanni

Vignale. Cambridge University Press

5. “The Physics of Low-Dimensional Semiconductors” by John H Davies. Cam-

bridge University Press
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2. DEVICE FABRICATION AND EXPERIMENTAL

SETUP

2.1 Heterostructures

The starting point for the devices fabricated in this work is a hetereostructure

made of GaAs and AlxGa1−xAs. The almost identical lattice constants of these two

compounds leads to a final structure with no strain. The heterostructures in this

work were grown by Loren Pfeiffer, Ken West and Michael Manfra in Bell Labs using

Molecular Beam Epitaxy (MBE). The technique involves depositing monolayers of

elements that constitute the hetereostructure on the substrate, GaAs here. The

chamber is under ultra high vacuum, resulting in molecules of the elements having

very large mean free path so that they are not scattered until they hit the substrate

or the walls of the chamber. Very clean interfaces can thus be realized, which in turn

reduces impurity scattering and improves mobility of these heterostructures. The

heterostructures used in this work are quantum wells of GaAs sandwiched between

layers of AlGaAs. The important step in the growth of a heterostructure is the

doping layer which provides the charge carriers. Modulation doping is a commonly

used technique to reduce the scattering with donors. In this method the structure is

doped remotely, away from the quantum well and the charge carriers migrate to the

quantum well interface. The motion of charge carriers along the z direction (growth

direction) is quantized. For our samples with densities ∼1011 cm−2 and well widths

∼20 nm only the lowest level is occupied. The charge carriers are free to move in the

plane perpendicular to the growth direction, and this constitutes the two dimensional

electron/hole gas. Samples in this work were made from two different heterostructures
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grown along different crystallographic axes. The transport properties are also different

thus making them suitable in different regimes of transport studies.

2.1.1 Si-doped GaAs/AlGaAs

With the increasing interest in hole GaAs/AlGaAs systems for their applications

in spintronic devices and in the study of spin-orbit interactions, the quality and tech-

niques of growth of these heterostructures also improved. The conventional technique

of using Be-dopants along (001) orientation of GaAs resulted in high sample disorder

limiting the highest mobilities achievable in two dimensional hole systems. Due to the

engineering advantage of using a single source to grow both n-type and p-type GaAs

wafers in the same Molecular Beam Epitaxy(MBE) chamber and a smaller diffusion

constant, Si was chosen as the dopant. Along (311) Si is incorporated in the Arsenic

site and acts as an acceptor. Sharper Si distribution made mobilities of the order of

∼0.3-0.4 106cm2/Vs achievable.

Due to the lower symmetry of wafers grown along (311) the band structure is more

anisotropic (hence sometimes more interesting) than the band structure of wafers

grown along (001). For 2D gas grown along (311) direction, the 2D plane is defined by

the axes [110] and [233]. The dispersion curves (energy versus in-plane wave vector)of

some of the higher subbands are known to have a camel back structure with minima

along the [110] direction [26]. The [233] direction has corrugations (as a by-product

of growth) which result in interface scattering leading to a mobility anisotropy in the

plane of the 2D hole gas. Mobility along [233] can be higher by a factor of 2-4 than

the mobility along [110] [27]. These complications in the transport properties of this

low symmetry growth direction lead to some rich physics which becomes apparent in

our study of g-factor of holes using a quantum point contact in Chapter 3.

The use of atomic force microscope (AFM) lithography to make low dimension

samples further restricts the design of heterostructures that could be used for our

work. For efficient depletion of the 2D gas under the oxide layer, the 2DHG cannot



17

be deeper than 40nm from the surface [28]. Samples for the work on quantum point

contacts have been made from heterostructure described in [15].

2.1.2 C-doped GaAs/AlGaAs along (001)

Further improvement (beyond 0.3-0.4 × 106 cm2/Vs) in mobilities for structures

grown along (311) is believed to be limited by the interface roughness scattering

[29]. The plane of the 2D gas for growth along (001) is characterized by [110] and

[110] axes. The very low mobility anisotropy between [110] and [110] ( 20%) makes

certain transport experimental results (like our study of the nematic phases) easier

to interpret. Recent improvement in fabrication techniques has led to mobilities

∼ 106cm2/Vs at a density of 1011cm−2 [30].

Samples for the study of nematic phases were made from wafer fabricated with

the heterostructure design described in [24](sample C).

2.2 Nanofabrication

A combination of various lithography techniques and etching methods are used to

fabricate the nanodevices from the plain GaAs/AlGaAs heterostructures described

above. We use three different kinds of lithography techniques to pattern the het-

erostructure depending on the length scale at which the sample is processed. The

operating principles and the advantages and disadvantages of these techniques are

given below.

2.3 Optical Lithography

We use optical lithography as a first step in device fabrication: to make circular

mesa structures of radius 10µm. This helps in making electrical contacts to the

low dimensional devices which are then fabricated using AFM lithography/ e-beam

lithography. All optical lithography in this work was done on the Suss MJB3 mask
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aligner at the Birck Nanotechnology Center. Resolution of 0.6 µm and alignment

accuracies of 1.0 µm can be achieved using this mask aligner. Fig. 2.1 shows the

basic structure, at two magnifications, that was patterned for all the one dimensional

devices used in this work. After cleaning the wafer with Trichloroethylene, Acetone

and Isopropyl alcohol, AZ1518 photoresist(positive) is spun for 40 seconds at 6000

rpm. It is then pre baked at 110oC for 1 minute. The desired mask is then aligned with

the wafer and exposed with UV light of wavelength 400nm. A solution of AZ 351 and

DI water in the ratio 1:5 is used to develop the exposed areas. Photoresist is removed

from those regions that were exposed with UV light. The wafer is then post-baked

at 90oC for 30-60 min followed by wet etching using piranha etch : H2O:H2SO4:H2O2

in the ratio 1:8:1000 for 2 minutes. This gives trenches 100nm deep, which isolates

regions of 2D hole gas at low temperatures(4K). Photoresist is then removed using

acetone.

2.4 Electron Beam Lithography

E-beam lithography is the most common technique used to pattern nanodevices

on a two dimensional electron/hole gas. It is versatile in the sense of bridging many

length scales. The 3mm × 3mm mesa structures described in the previous section as

well as the fine one dimensional devices that range between few tens of nanometers,

both can be fabricated using this technique. While the devices made using e-beam

lithography were not measured for this thesis due to other experimental constraints,

considerable time and effort was spent in fine tuning the parameters and calibrat-

ing the lithography procedure. To that end, the basic procedure to fabricate low

dimensional devices and rudimentary characterization of these devices is presented

below.

The process flow for fabricating devices is shown in Fig. 2.2. Briefly, the sample is

first cleaned using the standard three solvent procedure - Trichloroethylene, Acetone

and Alcohol. E-beam positive photoresist, like the PMMA (4% solution of 950PMMA
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(c)(b)(a)

Figure 2.1. (a) 3mmx3mm mesa that are patterned onto the sample
surface by optical lithography. Pink squares are the windows for the
In/Zn contacts. The blue lines are the regions that are etched and
hence isolates conducting regions of the 2D gas. (b) Central region
of the mesa-a circular area of 10µm radius, onto which devices are
fabricated using AFM. (c) AFM micrograph of the central region of
the sample. White lines are oxide lines that separate the 2D gas. The
black regions are the etched out lines from the previous step of optical
lithography.
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Figure 2.2. Process flow for fabricating mesa and fine one dimensional
devices using e-beam lithography.
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(c)(a) (b)

Figure 2.3. (a) 3mm×3mm mesa pattern with alignment marks in
the 3 corners of the square that is the first step in patterning using
e-beam. (b) The second step of connecting lines(in pink) and fine
devices(in blue) that are patterned after aligning.(c)Screen shot of a
focussed beam at 10pA for 10sec.
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in chlorobenzene)(Poly MethylMethAcrylate) is spun at 6000 rpm for 45 sec ( 5000Å).

While thinner PMMA can be used for wet etching(it is crucial to have thick photoresist

for evaporation of contact pads which is not described in this particular process flow)

the exposure parameters presented below have been fine tuned for this thickness.

The sample is then pre-baked at 1800 C for 90 sec. In the first exposure step, the

3mm×3mm mesa, along with the alignment marks fig. 2.3(a) is written. The mesa

pattern is then developed in a solution of MIBK:IPA :: 1:3 for 30 seconds. To stop

the developing process, the sample is sprayed with DI water for ∼ 1min, followed by

Dry N2 blow dry. It is then post baked @ 950C for 30 min followed by etching similar

to the process after optical lithography, described in previous section. The etched

(100nm deep) regions (colored in fig. 2.3(a)(b)) separate areas of 2D gas. To write

the finer devices the sample is spun with a thinner photoresist layer (PMMA 2% in

Chlorobenzene) at 6000 rpm for 45sec and pre-baked as before. The sample is then

aligned using the alignment markers. After alignment, the beam is focused at low

current values of ∼10pA, close to the central region (∼100nm away from the center)

by burning spots (starting from 30 sec and successively reducing the time by 5-10

sec) followed by imaging the spots. It is important to get a well focussed beam before

attempting to write the fine patterns. A well focussed beam has a spot(5-10sec) that

is ∼20-40nm in radius and is in the form of a doughnut. A snapshot of the focussed

spot is shown in fig. 2.3(c). The finer patterns are then written at 15-20pA, and the

lines that connect the fine device to the previously etched regions are written at 2nA

(fig. 2.3(b)). The post processing is done similar to the previous step of writing a

mesa, with the etching done only up to 20nm. Fig. 2.4(a) shows a nanodevice- a

quantum dot with a quantum point contact as a sensor- that was fabricated with this

technique. As can be seen in Fig. 2.4(b), the device shows good control with the side

gates and the etched lines separate regions of 2D gas.

While this technique is versatile in being able to fabricate all length scales involved

in the fabrication, it is not suitable for very shallow 2D systems as the damage caused

to the surface due to the energetic e-beam is considerable.
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QPC 3

0.1 m

Figure 2.4. (a) AFM micrograph of a quantum dot device with a
quantum point contact sensor fabricated using e-beam lithography.
The different point contacts that can be probed are marked in black.
(b) Conductance of the three quantum point contacts marked in (a)
as a function of gate voltage at 4K(all the gates are ramped together)
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2.5 Local Anodic Oxidation- AFM lithography

Atomic Force Microscope(AFM) lithography is a powerful tool in nanofabrication

used to achieve nanometer scale resolution [31,32]. It scores over the widely used elec-

tron beam lithography technique by requiring lower energies and hence causing lesser

damage to the semiconductor surface. It also has the advantage of post measure-

ment tunability of the devices. AFM-local anodic oxidation(LAO) leads to sharper

potential compared to the top gating technique and also eliminates leakage problems

associated with low Schottky barriers in p-GaAs.

The procedure involves scanning a clean surface of the sample, that is grounded,

with a negatively biased tip in a humid atmosphere, Fig. 2.5. We use a Veeco Dimen-

sion 3100 AFM and apply negative voltages in the range of 16− 30V to the tip. The

AFM is operated in the tapping mode where the damping of the oscillation ampli-

tude is kept constant. This mode is known to give greater stability in the lithography

process compared to the contact mode where the repulsive force between the tip and

sample is kept constant. The humidity in the environment is controlled by enclosing

the sample and tip in a chamber through which a regulated flow of nitrogen passing

through DI water is maintained. The chamber’s relative humidity is maintained at

35%. This leads to the formation of a thin water meniscus on the tip which acts as

the electrolyte for the oxidation reaction. The electric field between the tip and the

sample breaks down water into H+ and OH− ions which eventually oxidizes the GaAs

surface to form Ga2O3 and As2O3. The chemical reaction leading to the oxidation of

GaAs is given by [33]:

2GaAs + 12H+10H20 → Ga2O3 + As2O3 + 4H2O + 12H+

The height and homogeneity of the oxide lines written are very sensitive to certain

parameters.

(i) Sample surface quality : It’s imperative that the surface is cleaned very well

using the three solvent procedure : Trichloroethylene, Acetone, Isopropyl alcohol.

This is followed by a 15 sec dip in a HF:DI (1:10) solution which hydrogenates the
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(ii)

(b)(a)

(i)

Figure 2.5. (a) Schematic of the setup for the AFM local anodic oxi-
dation procedure. 3D micrograph of the sample indicates the source,
drain and gate regions which are separated by the oxide lines. The
oxide lines are drawn using a negative bias on the AFM tip(blue ar-
row).(b)(i) Leakage current across the oxide line for the device at 4K.
(b)(ii) Conductance of the quantum point contact as a function of the
gate voltage(both gates ramped together)at 4K.
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surface. The sample is then flushed with DI water for 2 mins. This last step is crucial

to make sure all dangling bonds are substituted with hydrogen which is then removed

during the oxidation process.

(ii) Tip quality : Devices in this thesis were made using Mikromasch NSC15 Si

tips which are processed in batches. Typical resonant frequency and force constant

of the tips are ∼325 kHz and 40N/m respectively. Characterizing tips prior to writ-

ing a device is always desirable since the tip quality can vary even within the same

batch. The tip quality can be inferred from the quality of the images. The image

from an AFM depends on the shape of the tip. The feature size that can be resolved

is dependent on the radius of cruvature of the tip. Smaller the radius, smaller the

size of features that can be resolved. By imaging a feature on the sample whose size

is known, the sharpness of the tip can be inferred. Tips get blunt with use and this

step can prove crucial to avoid misinterpreting feature sizes of devices written using

LAO. The shape of the tip can also be distorted due to accumulation of dirt from the

sample. This could result in spurious feature sizes and shapes. The dirt sometimes

gets deposited on the device while scanning. This can be removed by applying large

voltages (20-40V) for short durations while scanning regions unimportant to the de-

vice or cleaning the tip using isopropyl alcohol. Another important feature of the tip

that affects images is the sidewall angle. Tip cannot image sides of features that are

steeper than the sidewall of the tip. Knowing this parameter of the tip is important

to get the correct width of oxide(etched)lines. A more detailed description of all the

tip parameters and their relation to imaging can be found in [34].

(iii) Tip voltage: The width of the lines are known to increase with increasing

negative voltages on the tip. It was shown in [35] that biasing the tip with a square

modulated ac voltage increases the reproducibility and aspect ratio of the oxide lines.

Following that lead we modified our circuit to add AC voltage to the tip, as explained

in fig. 2.6. The circuit is designed to modulate the DC bias on the tip with an AC

source at a frequency ∼ 2-3 kHz. In our experiments we found that using ac voltages

helps in initiating the oxidation process at lower voltages (∼12-15V)than with dc
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Figure 2.6. Schematic of the circuit to add AC voltage to the tip bias.
This circuit adds negative end of the cycle.

voltages.

(iv) Humidity : Maintaining the humidity of the AFM chamber is crucial to make

sure the water meniscus formed between the tip and the sample is not too thick.

Increased humidity leading to a thicker meniscus results in thicker oxide lines and

thermal drifts.

The formation of an oxide layer ∼ 10nm high on the sample effectively brings the

surface states closer to the deeper lying 2DHG by roughly the same distance thereby

depleting the 2DHG. For this to be effective it has been experimentally observed that

the 2DHG should not be deeper than 40nm [28]. This imposes some conditions on

the kind of heterostructures that can be used to fabricate devices using this method.

Regions of 2DHG separated by oxide lines can be used as in-plane gates for the

tuning of many low dimensional devices. Fig. 2.5 shows a quantum point contact

fabricated using LAO. A narrow quantum channel is formed (0.15µm wide) between

two oxide lines which separate the 2DHG into source, drain and gate regions as

labeled. The oxide lines are insulating at 4K for voltages in the range : -0.5V →
+0.5V. The voltage range increases as the temperature is lowered.
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2.6 Experimental setup

The energy scales we probe in our experiments on quantum point contacts are

of the order of 100µeV. In order to observe the various transport phenomena we are

interested in, we need temperatures at which the thermal smearing of energy levels

(with a Fermi-Dirac distribution), 3.5kBT , is well below these energy scales. At a

temperature of 300mK thermal smearing (∼88µeV) is barely below the interesting

energy scales. While effects like conductance quantization in one dimension are visible

at these temperatures, reducing the temperature by another factor of 10 is essential

to do accurate energy spectroscopy in 1D systems.

2.6.1 Dilution Refrigerator

We use a Kelvinox Oxford dilution refrigerator to obtain the ultra low tempera-

tures needed to study our samples. The principle of operation of a dilution fridge is

based on the fact that cooling down a mixture of He3/He4 below a temperature of

0.8K separates them into two phases: a dilute phase(dilute in He3) and a concentrated

phase, (rich in He3). Since the enthalpy of He3 in the two phases is different, evapo-

rating He3 out of the concentrated phase into the dilute phase provides a mechanism

for efficient cooling.

A schematic of the dilution refrigerator is shown in Fig. 2.7. The 1K pot is used

first to cool the unit down to 1.2K by pumping on it. The first segment of the dilution

fridge to cool below 1.2K is the still. It cools the incoming He3 before it reaches the

mixing chamber. It is important to maintain an optimum volume of the mixture and

the percentage of He3 in it, such that the phase boundary is formed in the mixing

chamber and the liquid surface is in the still. Pumping on the liquid in the still

removes He3 preferentially, as the partial pressure of He3 is 1000 times larger than

that of He4 at temperatures below 1K. The resultant decrease in the concentration

of He3 in the dilute phase in the still compared to that in the mixing chamber causes

He3 to evaporate from the concentrated phase into the dilute phase in the mixing
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chamber causing the system to cool further. The difference in pressure causes a flow

of He3 from the mixing chamber to the still. A small amount of heat is supplied to

the still to maintain this flow. The outgoing He3 from the mixing chamber is used to

cool the incoming mixture via heat exchangers.

The sample is mounted on a thermally annealed copper tail which is in thermal

contact with the mixing chamber.
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Figure 2.7. Schematic of a Kelvinox 100 Oxford Dilution Refrigerator
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3. ANISOTROPIC MODIFICATION OF THE EFFECTIVE

HOLE g-FACTOR BY ELECTROSTATIC

CONFINEMENT1

3.1 Introduction:g-factor of two dimensional hole systems

Landé g-factor is the parameter that determines the linear term in spin-splitting(also

known as Zeeman splitting) of energy levels in the presence of a magnetic field. While

for bulk systems the Zeeman splitting is independent of the direction of the magnetic

field, for quasi-2D systems the reduced symmetry gives rise to different g- factors for

in-plane and out of plane magnetic fields. In general, g‖ < g⊥ [36].

In two-dimensional GaAs hole gases (2DHG) grown along [001] crystallographic

direction, SO locks spins in the growth direction resulting in a vanishing spin re-

sponse to the in-plane magnetic field (vanishing effective Landé g-factor g∗) [5, 6].

For high-index growth directions, such as [311], in-plane g∗ is not zero and becomes

highly anisotropic [7, 8] with g∗
[233]

4 times higher than g∗
[110]

. This huge anisotropy is

attributed to the highly anisoptropic spin-orbit (SO) interactions in these systems.

Additional lateral confinement increases g∗ anisotropy [37] and the value depends on

the population of 1D subbands [14]. Strong suppression of g∗ for the in-plane magnetic

field perpendicular to the channel direction has been attributed to the confinement-

induced re-orientation of spins perpendicular to the 1D channel [37].

In this study, we demonstrate that the anisotropy of spin splitting is primarily due

1S. P. Koduvayur, L. P. Rokhinson, D. C. Tsui, L. N. Pfeiffer, and K. W. West, “Anisotropic
modification of the effective hole g-factor by electrostatic confinement”, Physical Review Letters
100, 126401 (2008);arXiv:0802.4271
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to the crystalline anisotropy of SO interactions and not the lateral confinement. We

investigate quantum point contacts with confinement in both [110] and [233] directions

and find that anisotropy of spin splitting depends on the field direction rather than

on the direction of the lateral confinement. There is a strong dependence of g∗ on

the number of filled 1D subbands N for one crystallographic direction (B‖[233]),

while g∗ is almost N -independent for the orthogonal field direction (B‖[110]). We

also report qualitative differences in the appearances of the conductance plateaus

for the two orthogonal confinement directions. For the channels confined in [233]

direction the conductance of spin-split plateaus is (N + 1/2)e2/h, in accordance with

Landauer formula. For the orthogonal directions non-quantized plateaus appear.

These plateaus have some resemblance to the so-called “0.7 structure” [38] and its

various “analogs” [39] and their conductance values change with magnetic field. The

major difference between the two orientations of 1D channels in our experiments is

the strength of SO, which may provide some clue to the origin of these yet-to-be-

understood anomalies.

3.2 Sample details and experimental observations

The QPCs are fabricated from high mobility (µ ∼ 0.4× 106 Vs/cm2) low density

(p ∼ 1.4× 1011 cm−2) 2D hole gas grown on [311]A GaAs. We use AFM local anodic

oxidation [31, 32] to fabricate the QPCs as described in the Introduction chapter of

this thesis. An AFM image of the QPC device measured is shown in Fig. 3.1(c). QPCs

]a and ]c are confined along [233] and QPC ]b is confined along the perpendicular

[110] direction. White lines are oxide which separates 2DHG into source (S), drain

(D) and gate (G) regions, the 2DHG is depleted underneath the oxide. The side gates

are used to control electrostatically the width of the 1D channel. AFM lithography

aids in precise control of QPC dimensions with corresponding pinch-off voltage control

within a few mV, which allows us to compare orthogonal QPCs with similar confining

potential. At T = 4 K, QPCs show regular smooth FET characteristics as a function
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voltage at 4K and B=0.

of gate voltage(Fig. 3.1(b)). For orthogonal QPCs with similar pinch-off voltages,

resistances differ by a factor of two, reflecting the underlying anisotropy of the 2DHG.

Conductivity of 2DHG on [311] GaAs is anisotropic due to a combination of effective

mass anisotropy and difference in surface morphology, with [233] being high-mobility

and [110] low-mobility directions [27].

Conductance traces at low temperatures were studied for ∼10 samples. A typical

device (with the best quantized conductance steps among those measured) is analyzed

in the following section. Conductance at low temperatures along the two orthogonal

directions is shown in Fig. 3.2. The blue curves are measured for B = 0. Four-terminal

resistance is corrected for the gate-independent series resistance of the adjacent 2D

gas, R0 = 300 − 600Ω in all the samples measured. R0 was also corrected for its

B-dependence which was measured separately for both crystallographic directions (a
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35

20% increase at 12T). At low temperatures conductance is quantized [9, 10, 13] in

units of G = Ng0, where g0 = 2e2/h and N is the number of 1D channels below the

Fermi energy, which reflects the exact cancellation of carriers velocity and the density

of states in 1D conductors. The factor 2 reflects spin degeneracy of energy levels at

B = 0. Plateaus appear when electrochemical potentials of source and drain lay in the

gap between neighboring 1D subbands EN and EN+1. In various samples we resolve

up to 8 plateaus at temperatures T < 100 mK. The samples were rotated either in situ

(Fig. 3.4) or after thermo-cycling to room temperature (Fig. 3.3). Mesoscopic changes

during thermo-cycling are reflected in a small difference between the B = 0 curves,

yet they do not change level broadening and onset of spin splitting significantly.

3.3 Effect of in-plane magnetic field

In general the 2D energy spectrum for holes contains linear, cubic and higher-order

terms in B [36]. At low fields linear term dominates and we will approximate spin

splitting by the Zeeman term with an effective g-factor, EZ = 2g∗[ijk],NµBB, where

µB is the Bohr magneton and g∗[ijk],N depends on field orientation B‖[ijk], energy

level number N and confinement direction. Half-integer plateaus appear at critical

fields BN+1/2, when spin splitting of the N -th level becomes equal to the disorder

broadening of the level, as shown schematically in Fig. 3.2(c). At sufficiently higher

fields, conductance is quantized in units of e2/h, where the B = 0 integer plateaus

disappear(Fig. 3.2(a)&(b) red curves).

Effect of in-plane magnetic field on conductance is shown in Figs. 3.3 and 3.4 for

the two orthogonal field direction. The curves are offset proportional to the magnetic

field with 0.25T increments.For the sample studied in Figs. 3.3 (a,b) the 1D channel

is confined in [233] direction (I‖[110]), while those in Figs. 3.3 (c,d) and 3.4 (a,b)

are confined in [110] direction (I‖[233]).

There are both quantitative and qualitative differences in the field response of

orthogonally oriented 1D channels. We will start the analysis with quantitative com-
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parison of spin splitting of energy levels for different orientations of magnetic field

and channel directions. While level broadening is different for different energy levels

we expect it to be independent of the direction of the magnetic field and the ratio

of g∗’s for the two orthogonal crystallographic directions can be obtained from the

appearance of half-integer plateaus, B
N−1/2

[110]
/B

N−1/2

[233]
= g∗

[233],N
/g∗

[110],N
. The integer

plateaus disappear at the fields BN when two neighboring levels with opposite spin

intersect, and the average < g∗[ijk],N >= (g∗[ijk],N + g∗[ijk],N+1)/2 can be found from

∆EN = ∆Ez =< g∗[ijk],N > µBBN
[ijk], where ∆EN is the zero-field energy spacing of

1D subbands excluding level broadening.

Splitting and crossing of energy levels are best visualized in transconductance

plots. In Fig. 3.5(a,b) a grayscale of dG/dVg for the data in Fig. 3.3(a,b) is plotted.

The white regions correspond to the plateaus, the dark regions correspond to the

energy level being aligned with the Fermi energy in the leads and reflect level broad-

ening, which is found to be roughly half of the level spacing in our samples. At low

fields the width of the plateaus decreases almost linearly with field, which justifies the

use of linear approximation. There is clear deviation from linear dependence at higher

fields. The critical fields where levels cross (BN) and split (BN−1/2) are indicated by

triangles and circles.

3.4 Non-linear transport spectroscopy

Level spacing is determined from non-linear transport spectroscopy. When a DC

bias is applied to the source-drain, new plateaus appear that are quantized at half-

integer values. These half-integer plateaus are understood to appear when the number

of conducting subbands in the forward and backward direction of transport differ by

1 [40–42]. A gray scale plot of transconductance is shown in Fig. 3.5(c). The plot

is in logarithmic scale with white regions representing the plateaus. By determining

the maximum current Imax for the N th plateau at which the transconductance is still

zero we obtain the 1D subband spacings between levels N and N + 1 excluding level
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Table 3.1
Summary of experimental values used to extract g∗ for different energy
levels for channel along [110].

Channel along [110]

N R Imax ∆EN BN
[233]

< g∗
[233],N

> BN
[011]

(T) < g∗
[011],N

>
B

N−1/2
[011]

B
N−1/2
[233]

=
g∗[233]
g∗
[011]

g∗
[233]

(kΩ) (nA) (µeV) (T)

1 12.9 6 80 4.5 0.31

2 6.45 23 150 3.6 0.73 8 0.32 3 0.94

3 4.3 40 170 7.5 0.4 10 0.30 2 0.6

4 3.225 50 160 8 0.34 9 0.31 1.8 0.56

5 2.58 60 150 7.3 0.36 9 0.29 1.2 0.35

Table 3.2
Summary of experimental values used to extract < g∗ > for different
energy levels for channel along [233]

.

Channel along [233]

N R IB=0
max ∆EB=0

N I8T
max,[011]

∆E8T
N,[011]

< g∗
[011],N

> BN
[233]

< g∗
[233],N

>

(kΩ) (nA) (µeV) (nA) (µeV) (T)

2 6.45 25 161.25 22.5 145.13 0.035

3 4.3 27.5 118.25 22.5 96.75 0.046 3 0.56

4 3.225 50 161.25 45 145.13 0.0347 3 0.93

5 2.58 42.5 109.65 37.5 96.75 0.028 6 0.96

6 2.16 35 75.6 3.25 0.4

broadening as ∆EN = eRImax, where R = h/2Ne2 is the resistance on the plateaus.

The experimental data for the channel along [110] is summarized in Table 3.1. We

obtain the energy level spacing ∆EN for the first five energy levels using the above

explained method. From the critical fields BN we obtain the average < g∗[ijk],N > for

the neighboring energy levels. The ratio of the g∗s is 3 for N = 1 and approaches the
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2D value of 1.2 for large N . The values < g∗
[110]

> do not depend on N and we use

g∗
[110]

= 0.3 to obtain the values for g∗
[233]

from the ratios g∗
[233],N

/g∗
[110],N

. In Table 3.2

we present similar data for QPCs with the channel along [233] direction. For these

samples no half-split plateaus are observed for B ‖ [110] and BN−1/2 is unattainable.

We still can extract the average < g∗ > values by measuring the change in the energy

level spacing ∆EN(0) − ∆EN(B) = 〈g∗〉µBB, as shown by bars in the schematic in

Fig. 3.5(d). For B ‖ [233] the introduction of g∗ has questionable meaning due to

anomalous behavior of half-integer plateaus and ill-defined BN−1/2. We estimate g∗

from the measured BN .

Fig. 3.6 summarizes our results for the g∗ for different confinement directions.

For B ‖ [233] spin splitting of energy levels strongly depends on the level number N

for both confinement directions. For the field B ‖ [110], g∗ is smaller and is almost

independent of N . We conclude that g-factor anisotropy is primarily determined by

the crystalline anisotropy of spin-orbit interactions. Lateral confinement enhances

the anisotropy.

3.5 Effect of diamagnetic shift on g-factor anisotropy

So far we ignored diamagnetic shift of energy levels, which is the shift of 2D

subbands as a function of applied magnetic field. The ratios g∗
[233],N

/g∗
[110],N

are not

affected by this shift because they characterize energy difference between spin states

of the same orbital level. Likewise, the extracted <g∗> will not be affected by field

confinement in the growth direction because the first 8-10 1D levels belong to the

same lowest 2D subband. The only value to be affected by diamagnetic shift will be

<g∗> for B‖I. To estimate the correction we approximate both vertical and lateral

confinement by parabolic potentials ~ωz = 2.4 meV , ~ωy = 0.3 meV. The corrected <

g∗c >=< g∗ > (1+ω1(BN )−ω1(0)
ω1(0)

), where ~ω1 = ~
2

√
(ω2

c + ω2
y + ω2

z)−
√

(ω2
c + ω2

y + ω2
z)

2 − ω2
yω

2
z

is the field dependent energy spacing for spinless particles [43], ωc = eB/mc is the

cyclotron frequency, and mc =
√

mhml = 0.28me is the cyclotron mass. For I‖[233]
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the critical fields BN
[233]

∼ 3 T are small and correction to < g∗ > due to the diamag-

netic shift is < 5%. For the channel along [110] BN
[110]

∼ 8 − 10 T and correction is

∼ 30% which is not negligible. We plot the corrected values in Fig. 3.6.

3.6 Unusual qualitative behavior of “half-integer” plateaus

Now we will highlight a few qualitative differences in the appearance of “half-

integer” plateaus for the channels along [110] and [233] directions. Conductance of

spin-split plateaus for channels along [110] are quantized at G = (N + 1/2)g0, in full

agreement with the theory. In point contacts with confinement in the orthogonal

direction, conductance of spin-split plateaus is not quantized and is field dependent.

At low fields (B < 4 T) their evolution resembles “0.7 structure” and various anoma-

lous plateaus reported in electron samples. At higher fields the conductance of these

plateaus increases with magnetic field, at the same time the integer plateaus remain

quantized at Ng0. We emphasize the motion of spin-split plateaus with the slope of

arrows in Figs. 3.3 and 3.4. For example, in Fig. 3.3(c) a plateau at 4.3g0 appears at

B ∼ 3 T and its value gradually increases to ∼ 4.8g0 by 12 T. The next non-integer

plateau appears at B ∼ 3 T and increases to ∼ 6g0 by B = 12 T. At the same time,

the neighboring integer plateaus remain quantized at G = 4g0, 5g0 and 6g0. This

feature has been observed consistently in all the samples we measured, as is evident

from Fig. 3.4, where similar data is presented for a different sample: a plateau at 5.2g0

appears at B ∼ 3.3 T and increases to ∼ 6g0 by 8 T. The orthogonal 1D channels are

fabricated from the same 2D hole gas and have similar confinement potentials. The

only difference is due to the anisotropy of spin-orbit interactions. Thus, we conclude

that spin-orbit interactions are responsible for the anomalous behavior.

3.7 Conclusion

To summarize the results, we investigate effects of lateral confinement on spin

splitting of energy levels in 2D hole gases in [311]GaAs. We found that lateral con-
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finement enhances anisotropy of spin splitting relative to the 2D gas for both confining

directions. Unexpectedly, the effective g-factor does not depend on the energy level

number N for B‖[110] while it has strong N -dependence for the orthogonal orienta-

tion, B‖[233]. We also observe qualitative differences in the appearance of spin-split

plateaus for the two orthogonal directions of lateral confinement, which we can at-

tribute to the difference in spin-orbit interaction.
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4. EFFECT OF STRAIN ON NEMATIC PHASES IN TWO

DIMENSIONAL HOLES1

4.1 Nematic phases in Quantum Hall systems

Interplay between kinetic energy and electron-electron interactions in two-dimensional

electron gases in magnetic fields leads to a rich variety of possible ground states, rang-

ing from incompressible Laughlin liquids, the Wigner crystal, charge density waves

(CDW) to exotic non-Abelian anyonic states. The possibility of the formation of a

CDW state had been suggested [17] even before the discovery of the quantum Hall

effect, and later it was predicted that a CDW should be the ground state for partially

occupied high Landau levels [18, 19]. Experimentally, anisotropic magnetoresistance

(AMR) has been observed in 2D electron [21,22] and hole [23,24] gases. The majority

of experiments have been conducted on samples grown on (001) GaAs. Unexpect-

edly, the CDW was found to be consistently oriented along [110] crystallographic

direction in these samples, a surprising fact considering the isotropic nature of the

wave functions on the high symmetry (001) surface.

Search for the physical origin of the broken symmetry and the observed preferential

orientation of stripe phases has been actively pursued experimentally and theoretically

over the past decade. Reduced symmetry of the interface was suggested [44] as a

factor which introduces an anisotropy of the effective mass [45] or of the cyclotron

motion [46]. However, single-particle effects associated with these anisotropies seem

unlikely to be responsible for the large magnitude and strong temperature dependence

1Sunanda P. Koduvayur, Yuli Lyanda-Geller, Sergei Khlebnikov, Gabor Csathy, Michael J. Man-
fra, Loren N. Pfeiffer, Kenneth W. West, “Effect of strain on stripe phases in the Quantum Hall
regime”arXiv:1005.3327v1
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of the resistance [47]. Later work showed [48] that the precise symmetry of the 2D gas

confining potential is also unimportant, and micron-scale surface roughness does not

correlate with the stripe orientation. There have been theoretical suggestions [49–51]

that anisotropic correction to electron-electron interactions arising from elastic and

piezoelectric effects can be responsible for the resistance anisotropy. While the free

energy of the CDW is minimized in the vicinity of [110] and [11̄0] directions, those

theories cannot explain why these directions are inequivalent. Progress has been made

in understanding the effect of the in-plane magnetic field, which has been shown to

influence orientation of stripes [52,53], the effect being explained by the field-induced

anisotropy of the exchange potential [54, 55]. However, naturally existing preference

for [110] orientation of the CDW in purely perpendicular field, the same for electron

and hole samples, remained unresolved.

In this work we show both experimentally and theoretically that strain breaks the

symmetry of electron-electron interactions in magnetic field and results in a preferred

orientation of the CDW. We show experimentally that externally applied shear strain

can enhance or reduce anisotropy of the resistance and switch low and high resistance

axes. Our theory shows that spin-orbit interaction induced anisotropy of spectrum in

the absence of strain results in [110] or[11̄0] being the preferential directions of CDW,

which are equivalent; in plane shear strain breaks the symmetry between these two

directions, and depending on its sign, the Hartree-Fock energy is minimized when the

CDW is oriented along one of these directions. We suggest that shear strains due to

internal electric fields in the growth direction caused by mid gap Fermi level pinning

at the sample surface are responsible for the observed preferred orientation of the

CDW in externally unstrained electron and hole samples. Finally, we find that strain

induces a stripe phase at a filling factor ν = 5/2, with a CDW winning over other

QH states.
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4.2 Sample and Experimental setup details

Samples were fabricated in the van der Pauw geometry, with In/Zn contacts, from

carbon doped GaAs quantum well heterostructure grown on (001) GaAs [24, 30].

From the low field Shubnikov de-Haas oscillations, the hole density is 2.25 × 1011

cm−2, and the mobility 0.8 × 106 cm2/Vs is determined at the base temperature

10mK. Some samples were thinned to 150 µm and glued on a multilayer PZT (lead

zirconate titanate) ceramic actuator with vacuum grease, which solidifies below 80K

transmitting the strain to the sample as efficiently as the epoxy used in previous

studies [56]. The samples’ [110] or [11̄0] crystallographic axis is aligned with the

polarization axis of the PZT. Application of voltage Vp to the actuator induces in-

plane shear strain in the sample εp/Vp = 2.8 × 10−7 V−1 and small uniform bi-axial

strain. We characterize the PZT stack at 300 mK by attaching strain gauges along

the polarization direction of the PZT and perpendicular to it [56]. The total shear

strain ε = εth + εp also includes a residual strain εth due to anisotropic thermal

coefficient of the actuator, which depends on the Vp during cooldown. To insure that

voltage on the actuator does not induce charge modulation in the attached sample

we insert a thin metal foil between the sample and the PZT. The foil was also used

as a back gate to adjust 2D gas density which has a weak dependence on strain due

to difference in piezoelectric coefficients of GaAs and AlGaAs [57] (density changes

by 8% for the maximum voltage span on the PZT).Fig. 4.1 shows the change in

density as a function of PZT voltage and the corresponding back-gate voltage needed

to counter the density change. Simultaneously with the strained sample we also cool

an unstrained sample(not attached to the PZT), fabricated from the same wafer as

the strained sample and adjacent to it. We cool the samples in a dilution refrigerator

with a base temperature of 10mK and use excitation currents of 5nA to measure the

resistances.
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Figure 4.2. Magnetoresistance is plotted as a function of B for the
current aligned with [110] (red) and [11̄0] (blue) directions in strained
and unstrained samples. In (a) no external strain is applied, (b)
thermally-induced tensile strain is along [110], and (d) along [110],
with εp = 0. (c) The sample is cooled down with Vp = −150V with
[110] along the poling axis of the PZT. Inset shows sample schematic,
red and blue arrows show current, and green arrows show strain.



50

4.3 Effect of external uniaxial strain on nematic phases

Fig. 4.2 shows the major effects of strain on the magnetotransport along [110](xx)

and [110](yy) for our samples. Magnetoresistance for externally unstrained(free sam-

ple)is shown in Fig. 4.2a. The resistance along [110] is scaled to have the same

magnitude as the resistance along [110] at low fields. States at ν = 7/2 and 11/2 are

highly anisotropic with low resistance direction along [110], while states at ν = 5/2,

9/2 and 13/2 are almost isotropic, consistent with the previous study [24]. In Fig. 4.2

b,d similar traces are shown for large ε = εth & +10−4 and ε = εth . −10−4 (εp = 0).

For εth < 0, Fig. 4.2b the anisotropy is enhanced compared to the unstrained sample,

with states at ν = 5/2, 9/2 and 13/2 becoming anisotropic and resistance for I‖[110]

approaching zero for half-filled Landau levels. For εth > 0, Fig. 4.2d, the low and high

resistance axes are switched. Here strain also leads to strong anisotropy at ν = 5/2

with low resistance axis along [110] direction.

Residual strains εth in Fig. 4.2b,d are larger than the in situ adjustable strain εp.

The large thermal strains can be offset by cooling down the PZT with some voltage.

In Fig. 4.2c we show anisotropic magnetoresistance (AMR) for a sample cooled with

Vp = −150 V, aiming for εth ∼ 0. While the traces are not same as in a free sample,

the anisotropy is definitely reduced compared to Fig. 4.2b, as seen by the reduced

resistance of R[110] at ν = 5/2, 7/2 and the isotropic ν = 9/2 state. Analysis of AMR

for various filling fractions as a function of εp is done for this particular cooldown.

Magnetoresistance as a function of εp is plotted near ν = 5/2 and 7/2 in Fig. 4.3.

At Vp < 0 magnetoresistance is highly anisotropic. For high resistance direction,

resistance RI‖[110] strongly depends on εp and decreases by a factor of 50 (4.4) at

ν = 5/2 (7/2) as Vp is varied from -300 V to 300 V. RI‖[11̄0] increases only 1.7 (1.3)

times. At Vp > 100 V, the resistance at ν = 5/2 is isotropic, with no maxima for

either current direction, as in unstrained sample. Thus, in the range of small strains,

the CDW is not a ground state at ν = 5/2, consistent with observations in unstrained

samples. From the data we conclude that ε < 0 within the adjustable range of Vp,
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Figure 4.3. Strain dependence of the anisotropic magnetoresistance.
(a-d)Magnetoresistance in the vicinity of ν = 7/2 and 5/2 for I‖[110]
and I‖[11̄0] as a function of voltage on the piezoelectric actuator Vp.
In (e-f) magnetoresistance at ν = 7/2 and 5/2 is extracted. On the
top axis, Vp is converted to the piezo-induced shear strain in the het-
erostructure; actual strain includes thermally-induced offset.

because RI‖[110] > RI‖[11̄0] at ν = 7/2. Continuous evolution of RI‖[110] and RI‖[11̄0] is

consistent with continuous change reported with in-plane magnetic field [53].

4.4 Strain-induced anisotropic Hartree-Fock energy for holes

Having presented experimental results of strain on the resistance in the QH regime,

I now present the Hartree-Fock theory of CDW developed by Prof. Yuli Lyanda-

Geller. The model was obtained by extending earlier theoretical work [18, 19, 58] to

anisotropic 2D systems. The Hamiltonian of holes in a strained 3D system is

H = −(γ1+
5

2
γ2)k

2+γ2

∑
i

J2
i k2

i +γ3

∑

i,j 6=i

[JiJj]kikj+−(a+
5

4
b)trε+b

∑
i

J2
i εii+

d√
3

∑

i,j 6=i

[JiJj]εij,

(4.1)
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where [JiJj] = (JiJj+JjJi)/2, i, j, k denote principal axis of the crystal x̂1 ‖ [001], ŷ1 ‖
[010] and ẑ1 ‖ [001], k is the wavevector of holes, and J is the angular momentum 3/2

operator describing the top bulk valence band. γ1, γ2, γ3, and a, b, d are dimensionless

(negative) constants defining the hole spectra [59, 60]. For quantum well confined

along (001) 2D spectra for unstrained holes was discussed by Nedoresov [61]. In this

work, the effect of transverse strain is considered. It is assumed that the spatial

quantization defines the largest energy scale, while strain introduces corrections to

size-quantized spectrum. Applying the approximation of infinite rectangular quantum

well, the quadratic in ki energy spectrum for the highest double degenerate valence

hole state in the presence of external or internal strain is

E = (2γ2 − γ1)(
π

a
)2 − (γ1 + γ2 + αγ3)(k

2
x1

+ k2
y1

) +
2γ3

√
3dεx1y1

γ2(π/a)2
kx1ky1 , (4.2)

where the numerical coefficient α is defined by constants γ1, γ2, γ3 [61]; in our sam-

ples α ' 0.4. The presence of heteroboundary with low symmetry also results in a

similar mass anisotropy. As shown by Aleiner [62], the lowered symmetry of the het-

eroboundary at z1 = zα is described by the HamiltonianHadm = V a0√
3
[Jx1Jy1 ]δ(z1−zα),

reflecting an admixture of heavy and light holes, where a0 is the lattice constant. In

the presence of both strain and such admixture the spectrum is given by Eq. (4.2)

with V a0/2a added to dεx1y1 . However, estimates show that strain-related anisotropy

is the principal cause of anisotropy. It is also noteworthy that if the external strain

is not purely shear strain, and εx1x1 6= εy1y1 , then one more anisotropic term appears

in Eq. (4.2), given by

δE =
3b(εx1x1 − εy1y1)

2(π/a)2
(k2

x1
− k2

y1
). (4.3)

Then the direction of principal axes of reciprocal mass tensor, and, therefore, prin-

cipal axes of the coefficients characterizing exchange energy, becomes dependent on

the ratio of εx1y1 and (εx1x1 − εy1y1). However, in the present experiments εx1y1 is

predominant and thus the term (εx1x1 − εy1y1) is neglected, Eq. (4.2) is used for the

2D hole spectrum.
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Switching to rotated axes x → (x1 + y1)/
√

2 and y → (x1 − y1)/
√

2 along [110]

and [11̄0], the effective 2D charge carrier single-particle Hamiltonian in magnetic field

H = ∇×A can be written as H2D = Hε +Han
4 , where

Hε =
(px − e

c
Ax)

2

2mx

+
(py − e

c
Ax)

2

2my

, (4.4)

includes parabolic and Han
4 includes higher order terms.

Here the mass in x-direction [110] is different from that in y-direction [11̄0], with

m−1 = (m−1
x + m−1

y )/2 and µ−1 = (m−1
x −m−1

y )/2 being the isotropic and anisotropic

parts respectively. For holes quantized along the (001) direction m−1 = −(γ1 +

γ2 + αγ3)/m0, where γ1, γ2, γ3 are negative constants defining the bulk hole spectra

and include the effects of spin-orbit coupling. The coefficient α is defined by these

constants [61]. The anisotropic part induced by the shear strain ε = εxx = −εyy is

µ−1 = γ3

√
3dε/[γ2(π~/a)2]

where d is the deformation potential [59], and a is the quantum well width. For

electrons, m is the 3D effective electron mass mc, while the anisotropic part, obtained

in the third-order perturbation theory, is ~2/2µ = −P 2dε/
√

3E2
g , where P is the Kane

band coupling parameter [63] and Eg is the band gap. Note that the sign of the strain-

induced term for electrons is opposite compared to that for holes. Anisotropic higher

order terms Han
4 do not break C4 symmetry and do not result in the inequivalence

of [110] and [11̄0] directions. Thus, it is instructive to consider the parabolic part

separately and add strain-independent anisotropy using perturbation theory to final

results. In the quartic approximation

Han
4 = βp2

xp
2
y

where β = 3(γ2
3 − γ2

2)a
2/(π22m0γ2~2) for holes in the perturbative expansion.

To find the single particle wavefunctions of the 2D charge carriers in quantizing

magnetic field H ‖ ẑ, the deformed coordinate system, x′ = x
√

mx

m
, y′ = y

√
my

m

is defined, where m =
√

mxmy. The single-particle Hamiltonian in the deformed
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coordinate system is isotropic, H2D =
(p′− e

c
A′)2

2m
, and the wavefunctions in deformed

variables are the usual Landau level wavefunctions with degeneracy in guiding center

coordinate quantum number X ′ = k′yl
2, where l =

√
~c
eH

is the magnetic length. The

following analysis that considers interacting electrons of partially filled high Landau

level is done in the deformed co-ordinate system. This work shows that there exists

a preferential crystallographic direction, in which the quiding center density wave

develops at around half-filling of the highest occupied Landau level.

The physical picture developed by Aleiner and Glazman [58] looks at the properties

of the 2D system with partially filled topmost Landau level, i.e., with one or several

fully occupied Landau levels and partially filled N -th Landau level, as defined by

Coulomb interactions of charge carriers of partially filled level, but with dielectric

constant defined by the charge carriers of fully filled Landau levels. Thus, at N À
r−1
s À 1, i.e., at sufficiently large N and small rs = 1

πna2
B
, where n is the 2D carrier

density and aB = ~2
me2 is the Bohr radius, the low energy physics of the 2D electron

liquid in weak magnetic field in the partially filled Landau level is described by the

effective Hamiltonian

Heff =
1

LxLy

∑

q′
ρ(q′)v(q′)ρ(−q′), (4.5)

where ρ(q′) is the projection of the density operator on the upper Landau level, and

v(q′) =
2πe2

κ0κ(q′)
√

(q′2x )mx

m
+ (q′2y )my

m

(4.6)

is the Fourier component of renormalized electron-electron interaction potential in

deformed coordinate system, κ0 is the background dielectric constant, κ(q′) is the

effective dielectric constant. It is worthwhile to note that while the single-particle

Hamiltonian is isotropic in deformed variables, the Coulomb potential is isotropic in

physical (untransformed) variables. The quantity under the square root in v(q′) is

in fact q =
√

q2
x + q2

y, anisotropic in transformed variables but isotropic in physical

ones. The effective dielectric constant for our system is given by

κ(q′) = 1− 2πe2

κ0q
Π(q′), (4.7)
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where Π(q′) is the polarization operator isotropic in deformed variables. Furthermore,

Π(q′) = − m

π~2
[1− J2

0 (Rcq
′)] (4.8)

where J0(x) is the Bessel function, Rc =
√

S/π is the geometric average of the

radii of the cyclotron ellipse, S is the area enclosed by the cyclotron ellipse. At

R−1
c ¿ q′ ¿ kF , where the Fermi wavevector is given by kF =

√
2mEF /~2, EF is the

Fermi energy, the effective dielectric constant reduces to one obtained by Kukusknin

et al [64]

κ(q′) = 1 +
2

qaB

, (4.9)

and is isotropic in physical (as opposed to deformed) space. The Fourier-component

of the charge density operator is given by

ρ(q′) =
∑

X′
αN(q′)e−iq′x(X′−q′yl2/2)a†X′aX′−q′yl2 , (4.10)

where αN(q′) = L0
N(q′2l2

2
) exp (−q′2l2

4
), L0

N(x) is the Laguerre polynomial, and a†X′

(aX′) is the creation (annihilation) operator for a hole with guiding center at X ′ in the

topmost LL. Defining the CDW order parameter ∆(q′) = 2πl2

LxLy

∑
X′ a

†
X′+q′yl2/2aX′−q′yl2/2,

the Hartree-Fock energy is obtained to be

EHF =
1

2πl2νN

∑

q′ 6=0

[uH(q′)− uex(q
′)]∆(q′)∆(−q′), (4.11)

where 0 ≤ νN ≤ 1 is the filling of the topmost LL and the Hartree-Fock potential as :

Heff
HF =

∑

X′
a†

X′− q′yl2

2

a
X′+

q′yl2

2

eiQ′xX′
∆(Q′)× [uH(Q′)− uex(Q

′)], (4.12)

.

The Fourier transforms of the Hartree and exchange potentials are, respectively,

uH(q′) = v(q′)[αN(q′)]2 and

uex(q
′) =

2πl2

LxLy

∑

Q′
uH(Q′) exp [il2(−Q′

xq
′
y + Q′

yq
′
x)]. (4.13)

Note that the two potentials are related by a Fourier transform but the arguments

in the Fourier transform of the Hartree potential are transposed relative to the ar-

guments of uex. While this transposition is not important in the isotropic case [18],
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taking it into account here is crucial for finding the preferred orientation of the CDW

modulation.

Applying an analysis similar to that in [18], it can be seen that when the Laguerre

polynomial in αn(Q′) is zero and the Hartree term is zero, the total Hartree-Fock

energy is negative and is given by the exchange contribution. The system is then

unstable with respect to the formation of the “guiding center” density wave with

the wavevector close to Q′. However, in contrast to isotropic system, in which any

direction of Q′ and Q gives the same magnitude of energy, so that the direction of

the charge density wave has to be chosen spontaneously, in our case the smallest Q′,

which corresponds to the direction with larger mass gives the largest value of the

exchange and the lowest HF energy. This can be seen, by expanding Eq. (4.12) in

small anisotropy parameter δm/ms, where ms = (mx + my)/2. The leading term in

the Fourier-component of the exchange interaction is then isotropic in the deformed

coordinate system, and is given by

− 2πl2

LxLy

∑

q′
[αN(q′)]2 × e2

q′
√

ms

m
+ 2a−1

B

eil2(−q′xQ′y+q′yQ′x), (4.14)

where q′ =
√

q′2x + q′2y . This term gives the same Hartree-Fock potential for any

orientation of the charge density wave wavevector Q′ (and therefore corresponding

Q), so that there is no preferential direction of anisotropy. The anisotropic term

which determines the preferential direction is

− δm

2
√

msm

2πl2

LxLy

∑

q′
[αN(q′)]2 × e2(q′2y − q′2x )

q′(q′
√

ms

m
+ 2a−1

B )2
eil2(−q′xQ′y+q′yQ′x), (4.15)

Two-dimensional integrals in Eqs.(4.14) and (4.15) after switching to polar coor-

dinates are easily reduced to integrals over absolute value of q′, with kernel arising

from (4.14) expressed via Bessel function J0(q
′Q′) and kernel arising from (4.15) ex-

pressed via J2(q
′Q′). The remaining integrals are evaluated numerically and the ratio

of isotropic and anisotropic parts of the exchange energy (including the higher order

anisotropic terms Han
4 ) is plotted in Fig. 4.4 for positive and negative shear strains.

The constants used in the calculations are d = −5.4eV , γ1 = −6.8, γ2 = −2.4,
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Figure 4.4. a) The ratio of isotropic and anisotropic parts of the hole
exchange potential for three values of shear strain ε. Strain-dependent
(Eq. 4.13) and strain-independent quartic corrections to the exchange
are included. b) Self-consistent calculations of the band profile and
internal electric fields in the studied wafer. c) Modeling of a HIGFET
structure from [65].

γ3 = −2.9, and α = −0.4. Note that the diffrence in exchange energy between CDW

in [110] or in [11̄0] directions reaches 5% for strains of 10−4. The CDW near the

half filling of the N -th LL naturally results in stripes with alternating νN = 0 and

νN = 1, which, in turn, translates into low resistance direction along the stripes and

high resistance direction perpendicular to the stripes. Thus, in the presence of ε 6= 0,

the CDW has a preferential direction defined by the sign of the strain, consistent

with the experimental results. While the theory is valid, strictly speaking, in high

Landau levels it appears to describe experiments even at N = 1, the lowest LL for

which L0
N(x) has a zero.



58

4.5 Internal strain in GaAs/AlGaAs heterostructure caused by built in

electric field

The preceding analysis suggests that internal strain may be responsible for the

observed orientation of stripes in externally unstrained samples. GaAs is a piezo-

electric material and any electric field in the ẑ direction results in an in-plane shear

strain ε = d14Ez, where d14 = −2.7 · 10−10 cm/V. A calculated band diagram for our

samples is shown in Fig. 4.4b. Inside the QW Ez < 2 · 104 V/cm and results in strain

too small to orient the stripes. Ez on both sides of the QW, caused by doping, is

also small and, in our samples, odd in z. However, in all GaAs samples there is a

large field near the surface of the wafer due to the pinning of the Fermi energy near

mid-gap. This surface charge-induced field is ∼ −106 V/cm and the corresponding

strain is ε ∼ 3 ·10−5. If transmitted to the QW region, this strain has the correct sign

and magnitude to explain the observed orientation of stripes in externally unstrained

samples. To show that transmission of strain does indeed occur, a minimal model

in which this effect is present is considered. The following theory was developed by

Prof. Sergei Khlebnikov. The free energy of the model is given by

Fel =
1

2
λ

[
(∂xuy + ∂yux)

2 + (∂zux)
2 + (∂zuy)

2
]

,

where ux and uy denote displacements, and x, y, z correspond to the [100], [010],

[001] directions, respectively. The total free energy density, including that due to the

electric field E = −∇Φ, is

F = Fel +
1

2
κE2 + 2βEzεxy + Φρext ,

where εxy = 1
2
(∂xuy + ∂yux) is the strain, and ρext is the density of external charges.

The model free energy thus involves three constants: the elastic constant λ, the

dielectric constant κ, and the piezoelectric constant β.

The elastic equilibrium equations corresponding to this free energy are

2∂yεxy + ∂2
zux + β̃∂yEz = 0

2∂xεyx + ∂2
zuy + β̃∂xEz = 0 ,
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where β̃ = β/λ. The relevant case is when the field Ez has no uniform component

with respect to z: ∫ d

0

Ez(x, y, z)dz = 0 ,

where d is the total thickness of the sample. Within our model, bulk strain can then

exist only if the field is nonuniform with respect to x and y, which is true in realistic

devices, where Ez(x, y, z) is nonuniform in (x, y) plane due to charge fluctuations on

the surface and in the doping layer.

For illustration, consider a field that has cylindrical symmetry: Ez(x, y, z) =

Ez(r, z). In this case, the equilibrium equations have a solution of the form

ux(r, φ, z) = U(r, z) sin φ ,

uy(r, φ, z) = U(r, z) cos φ ,

where U(r, z) is a single function of two variables which satisfies the equation

∂r

[
1

r
∂r(rU)

]
+ ∂2

zU = −β̃∂rEz .

Expanding U and Ez in Bessel functions, as follows:

Ez(r, z) =
∑

n

En(z)J0(qnr) ,

U(r, z) =
∑

n

Un(z)J1(qnr) ,

the equations for the individual components are obtained to be,

(∂2
z − q2

n)Un(z) = β̃qnEn(z) . (4.16)

The boundary conditions at z = 0 and d are ∂zUn = 0. The solution of strain is then,

εxy(r, z) =
β

2λ

∑
n

q2
n

∂2
z − q2

n

En(z)J0(qnr) + εb(r, z), (4.17)

where εb is localized near r = L. If Ez(r, z) varies with r at some characteristic

scale R, a typical qn is of order 1/R. Then, according to Eq. 4.17, the corresponding

component of the strain propagates largely undiminished over distances z ∼ R from
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the region where En(z) is large (sample surface). As a result, macroscopic regions

with sizable strain exist throughout the QW region.

The picture of internal strain allows us to explain orientation of stripes found in

2D electron gases. A typical band diagram of an electron sample is similar to that

shown in Fig. 4.4b, but is inverted relative to the Fermi level with both the surface

electric field and the shear strain changing sign. However, the anisotropic term in

Eq. 4.4 also has opposite sign for electrons and holes, so that the sign of the anisotropic

term in electron and hole exchange is the same. Thus, for both holes and electrons,

a surface field will orient the CDW along [110], as seen in experiments. With the

model developed above, the reorientation of stripes as a function of density observed

in a HIGFET (Heterojunction-Insulated Gate Field Effect Transistor) [65] can also

be explained. At low gate voltages (low densities), shear strain will be dominated by

the surface field, see Fig. 4.4c. At large gate voltages (2 V corresponds to 3 · 1011

cm−2), the electric field across the AlGaAs barrier becomes large enough to change

the sign of the strain in the 2D gas region, thus reorienting the stripes.

4.6 Conclusion

In summary, we have shown experimentally that orientation of CDW in the QH

regime can be controlled by external strain. Theoretically, this effect has been traced

to a strain-induced anisotropy of the exchange interaction and a competition between

the internal and external strain. In general, any factor that brings in a crystal-

lographic anisotropy of spectrum gives rise to a crystallographic anisotropy of the

Hartree-Fock energy of the CDW state (this is the case, for example, in hole gases

grown on low-symmetry (311) GaAs [23]). The theory developed as part of this

work includes calculations of the effect of quartic anisotropy of spectrum on exchange

potential and shows that the directions 001 and 010 become unfavorable, while di-

rections [110] and [11̄0] become favorable for the propagation of CDW. However the

most important effect arises because of strain, and in heterostructures grown in the
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high-symmetry (001) surfaces, piezoelectricity due to surface electric fields becomes

the source of inequivalence of [110] and [11̄0] directions for CDW propagation. We un-

derscore that, although the anisotropy of electron Hartree-Fock energy is two orders

of magnitude smaller than that for holes, it must still choose a preferential direction

for the CDW of guiding centers. Therefore, the preferential direction of the resistance

anisotropy in (001) samples appears to be universally dictated by internal strain.
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anisotropy energy in quantum Hall stripe states. Phys. Rev. B, 60:15574–15577,
1999.

[55] Tudor D. Stanescu, Ivar Martin, and Philip Phillips. Finite-temperature density
instability at high Landau level occupancy. Phys. Rev. Lett., 84:1288–1291, 2000.

[56] M. Shayegan, K. Karrai, Y.P. Shkolnikov, K. Vakili, E.P. De Poortere, and
S. Manus. Applied Physics Letters, 83(25):5235 – 7, 2003/12/22.

[57] A. K. Fung, L. Cong, J. D. Albrecht, M. I. Nathan, P. P. Ruden, and H. Shtrik-
man. Linear in-plane uniaxial stress effects on the device characteristics of Al-
GaAs/GaAs modulation doped field effect transistors. J Appl. Phys., 81:502–505,
1997.

[58] I. L. Aleiner and L. I. Glazman. Two-dimensional electron liquid in a weak
magnetic field. Phys. Rev. B, 52(15):11296–11312, Oct 1995.

[59] G. L. Bir and G. E. Pikus. Symmetry and strain-induced effects in semiconduc-
tors. Wiley, New York, 1974.

[60] J. M. Luttinger. Quantum theory of cyclotron resonance in semiconductors:
General theory. Phys. Rev., 102(4):1030–1041, May 1956.

[61] S. S. Nedorezov. Space quantization in semiconductor films. Soviet Physics–Solid
State, 12(8):1814–1819, 1971.

[62] I. L. Aleiner and E.L. Ivchenko. Anisotropic exchange splitting in type-II
GaAs/AlAs superlattices. JETP Lett., 55:692–695, 1992.

[63] E. O. Kane. Band structure of indium antimonide. Journal of Physics and
Chemistry of Solids, 1:249–261, 1957.

[64] I. V. Kukushkin, S. V. Meshkov, and V. B. Timofeyev. Two-dimensional electron
density of states in a transverse magnetic field. Uspehi Fiz. Nauk, 155:219–264,
1988.

[65] J. Zhu, W. Pan, H. L. Stormer, L. N. Pfeiffer, and K. W. West. Density-induced
interchange of anisotropy axes at half-filled high Landau levels. Phys. Rev. Lett.,
88:116803, 2002.



VITA



66

VITA

EDUCATION

Ph.D, Physics (Experimental Condensed Matter)

Purdue University, West Lafayette, IN 47907, December 2010

Master of Science, Physics

Indian Institute of Technology(IIT), Madras, India, 2003

Bachelor of Science, Physics

Madras Christian College, Madras, India, 2001

EXPERIMENTAL

SKILLS

AND TRAINING

• Lithography:

Photolithography

e-beam lithography

AFM lithography using Local Anodic Oxidation

• Etching

Dry etching : XeF2 etcher, Plasma Reactive Ion Etching techniques (RIE)

Wet etching techniques for GaAs, Si/SiGe etc

• Metallization:

Thermal evaporation: Denton, Edwards systems

e-beam evaporation: Airco, CHA

• Imaging: AFM, SEM



67

• Trained in various low temperature, low noise measurement and high vacuum

techniques

• Trained for ISO Class 3 cleanroom

• Machine shop techniques

• Transport measurements using Oxford Dilution Refrigerator and He 3 Refriger-

ator

PUBLICATIONS

• Sunanda P Koduvayur, Leonid P Rokhinson, Daniel C Tsui, L.N.Pfeiffer, K.W.West,

“Anisotropic modification of effective hole g-factor by electrostatic confinement”

Physical Review Letters 100, 126401, 2008 (http://arxiv.org/abs/0802.4271)

• Pranawa C Deshmukh, Tanima Banerjee, Sunanda P Koduvayur, Hari R Verma

“Interchannel coupling effects on non-dipole photoionization parameters.”

Radiation Physics and Chemistry, Vol.75 Issue 12,pp 2211-2220, 2006

• Effect of strain on nematic phases in two-dimensional holes

(Submitted to Physical Review Letters)

CONFERENCE PRESENTATIONS, INVITED TALKS AND POSTERS

• “Effect of strain on stripe phases in quantum Hall effect”, APS Condensed Mat-

ter Division March meeting, March 2010

• “Preferential orientation of stripes in high Landau levels”,APS Condensed Mat-

ter Division March meeting, March 2010

• “Spin-orbit interactions in two and one dimensional systems”, Portland Tech-

nology Development (PTD), Intel, OR, October 2009

• “Effect of strain on nematic phases of two dimensional hole gases”, accepted for

poster presentation, Electronic Properties of Two Dimensional Systems (EP2DS),

Kobe, Japan, July 2009



68

• “Effect of strain on nematic phases of two dimensional hole gases”, presentation,

APS Condensed Matter Division March meeting, March 2009

• “g-factor anisotropy in p-type GaAs/AlGaAs quantum point contacts”, presen-

tation, APS Condensed Matter Division March meeting, March 2006

• “Newly found dynamical effects on photoelectron parameters in the dipole ap-

proximation for atomic Xe”, Poster, XV National conference on Atomic and

Molecular Physics, Physical Research Laboratory, Ahmedabad, India, Decem-

ber 2004

WORKSHOPS

• Workshop on Silicon Qubit Quantum Information Science and Technology, Berke-

ley, California, August 2009

• Boulder summer school on “Physics of Mesoscopic systems”, University of Col-

orado, Boulder, July 2005

• Workshop on “Quantum Computation”, Institute of Mathematical Sciences,

Madras, India, June,2002

• Workshop on “Quantum Information and Entanglement”, Institute of Mathe-

matical Sciences, Madras, India, June, 2002

SOFTWARE SKILLS

C,C++,Labview, matlab, various lithography software

WORK EXPERIENCE

• Research Assistant, Purdue University, 2005-2010

• Teaching Assistant, Purdue University, 2004-2005



69

• Project Associate, Atomic and Molecular Physics Laboratory, IIT Madras, 2003-

2004.

• Summer Intern, Institute of Mathematical Sciences, Madras, 2002.

AWARDS AND HONORS

• Lijuan Wang memorial award, Department of Physics, Purdue, 2010

• Women in Science Travel grant, Women in Science program at Purdue, 2009

• H.Y.Fan Award for outstanding research in Experimental Condensed Matter

Physics, Purdue University, 2008

• Best Poster Award : XV National Conference on Atomic and Molecular Physics,

Physical Research Laboratory, Ahmedabad, India, 2004

• Cited for Merit cum Means scholarship, IIT Madras, 2001

• Recipient of Buckle’s studentship, Madras Christian College, 1998.

• Recipient of Director General’s (of (1) TN Air Sqn National Cadet Corp) schol-

arship for academic excellence, Madras Christian College, 1999

EXTRA CURRICULAR ACTIVITIES

• President, Asha for Education Purdue Chapter, 2006-2007

• Journalist,Science Fest(Shaastra-2001) magazine, 2001

• B certificate holder, National Cadet Corps, India, 2000

• Glider Pilot certification, India, 1999

REFERENCES

Provided upon request


